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Abstract

Human motion capture typically requires several high qual-
ity, synchronized and calibrated cameras in a studio envi-
ronment and can be potentially costly and technically com-
plex. Instead, we propose a system which combines and
improves upon two existing techniques, yielding an efficient
method that recovers maximum likelihood joint angles and
anthropomorphic data of the subject by factorization.

The first technique concerns using a rank constraint
framework to synchronize sequences of non-rigid motions
where we extend affine methods to perspective and homog-
raphy projection models. The second is a self-calibration
method for two affine cameras, using constraints derived
from prior knowledge of the underlying structure. We pro-
pose a minimal parameterization of the system to obtain an
initial solution then apply a full bundle adjustment over the
free parameters based on a geometric error.

We demonstrate the efficacy of our method by comparing
the recovered structure and motion with that from a com-
mercial motion capture system.

1. Introduction
Commercial human motion capture systems [20] use mul-
tiple hardware-synchronized, accurately calibrated cameras
under controlled conditions to track high contrast markers
at the joints, reconstructing the pose of the subject by trian-
gulation1. Markerless motion capture systems proposed by
the research community (e.g. [1, 6, 7, 10]) use fewer cam-
eras but often retain the requirement of accurate calibration
and universally assume the cameras to be synchronized.

In contrast, we propose a system using only two uncal-
ibrated and unsynchronized cameras. Not only does this
reduce cost and complexity but could also be employed for
surveillance or sporting analysis where the calibration and
synchronization of the cameras is unavailable. Our system

1Using markers solves the spatial correspondence problem which we
do not explicitly address here. Instead, we assume spatial correspondence
is available from markers or via manual labelling of the input images.

combines and develops methods for synchronizing image
sequences with those for stereo self-calibration (also re-
ferred to as ‘rectification’) using non-rigid affine structure.

We extend current rank constraint based methods for the
affine projection model [21, 19] to perspective and homog-
raphy models. In contrast to [4, 12] we use an algebraic
(rather than geometric) distance measure that is computa-
tionally inexpensive and can be expressed in a rank con-
straint framework. For self-calibration we exploit a minimal
parameterization of a matrixΩ that reduces computational
complexity, guarantees an intuitive initialization, implicitly
enforces ‘positive definiteness’ and requires no empirically
‘tuned’ parameters (see Section 2.2). Finally, we apply a
bundle adjustment over all free parameters to correctly min-
imize a geometric (rather than algebraic) reprojection error.

We review existing methods in Section 2 before out-
lining our extensions to synchronization methods in Sec-
tion 3. The improved self-calibration procedure is presented
in Section 4 and the complete system on a novel sequence in
Section 5. Section 6 concludes and discusses future work.

2. Related work
Our work is based upon the principle of factorization intro-
duced by Tomasi and Kanade [17] who showed that, under
orthographic projection, the rank of a normalized2V × N
‘measurement matrix’,W, is bounded above by 3 and
that the best2 estimate of structure and motion is achieved
by factorizingW using the Singular Value Decomposition
(SVD) and discarding all data relating to the singular values
σ4, . . . , σr.

In the context of dynamic scene stereoposis,W(f, f ′) is
computed using measurements from framesf andf ′ of the
‘reference’ and ‘target’ sequences, respectively:

W(f, f ′) =
[
xf

ref, 1 · · · xf
ref, N

xf′
tgt, 1 · · · xf′

tgt, N

]
=

[
P1

P2

]
Xf (1)

2Reid and Murray [14] later qualified ‘best’ by showing that the com-
puted structure and motion minimizes reprojection error and can there-
fore be interpreted as a Maximum Likelihood estimate, assuming isotropic
Gaussian noise.
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wherexf
i, n denotes the image coordinates of thenth feature

in thef th frame of theith sequence,Pi is theith projection
matrix andXf is the computed structure at framef . This
method was later extended for multiple objects by Costeira
and Kanade [5] although the application of this extension
has not yet been exploited for articulated motions (in part
due to its failure in the presence of dependencies between
motions [22]).

2.1. Synchronization
When presented with two sequences captured from unsyn-
chronized cameras (Figure 1), we wish to recover corre-
sponding frames related by the 1D affine transformation
f ′ = αf + δt whereα is the frame rate ratio andδt is
the offset between the 0th frames in each sequence.

Figure 1: Two timelines with synchronization shown by the ar-
row. Note that a frame may not physically exist at the correspond-
ing target instant due to the cameras being unsynchronized.

The alignment of image sequences has been studied by
Caspi and Irani recovering the spatiotemporal alignment of
sequences using optical flow with a planar projective (ho-
mography) model [2, 3]. However, our work is more closely
related to their feature-based methods for wide baseline
stereo [4]. Forming putative matches between featuretracks
and utilizing a voting scheme they compute the spatiotem-
poral relationship between the views using the geometric
distance between points and their associated epipolar lines
in the manner suggested by Reid and Zisserman [15].

The same error metric is also used by Pooleyet al [12]
who compute the epipolar geometry of the cameras using
matched background features and estimate synchronization
parameters using the Hough transform. Zhou and Tao [23]
assume a linear trajectory over a small period of time and
use the epipolar geometry for feature transfer over two con-
secutive frames to estimate the temporal offset from the
cross ratio of sets of four points.

In contrast, our work is inspired by that of Wolf and
Zomet [21] who exploit rank constraints to recover corre-
sponding frames by minimizing the ‘energy’,g, of a rankR
matrix above itsexpectedrank bound,r, defined as the sum
of squared singular valuesg =

∑R
i=r+1 σ2

i . This was later
extended [19] to recover synchronization tosub-frameac-
curacy for sequences ofunknown and differing frame rates.

It can be shown [18] that the ‘energy’ ofW(f, f ′) as de-
fined by Wolf and Zomet is equal to the reprojection error
following factorization and is therefore an intuitively appro-
priate metric for determining synchronization - at alignment
the image features are consistent with an underlying inter-
pretation of three-dimensional structure (the pose at that in-
stant), whereas if the sequences are not aligned the images
are ofdifferentpoints in space and therefore not subject to
the rank constraint.

2.2. Metric rectification
Given matched feature coordinates from multiple views,
affine structure and motion can be recovered from the fac-
torization ofW:

W = PX = PA−1AX (2)

where A is a 3×3 matrix3. The QR-decomposition of
A → SU gives a 3D rotation,S, and a pure affine trans-
formation,U. SinceS simply effects a change of Euclidean
coordinate frameafter rectificationit can be discarded with-
out loss of generality. Therefore, to recover joint angles
(which are not preserved in an affine coordinate frame) we
must determine the rectifying affine transformation,U. We
define a matrixΩ = UTU such thatU is recovered by
Cholesky factorization if and only ifΩ is positive definite.

In contrast to classical calibration methods [9] that uti-
lize known world distances, it was shown [17] that con-
straints on the recoveredmotion are sufficient to perform
self-calibration, as formalized by Quan for all parallel pro-
jection models [13]. Specifically, the axesiT andjT trans-
form to iTU−1 andjTU−1 such that the skew,rs, and dif-
ference in length,ra, are given (up to scale) by:

rs = iTU−1U−T j (3)

ra = iTU−1U−T i− jTU−1U−T j. (4)

Ideally, iT and jT are orthogonal and have unit aspect
ratio such thatrs = ra = 0. For three or more views, there
are at least six constraints onU−1U−T = Ω−1 such thatrs

andra are minimized by a linear least squares solution for
Ω−1.

Little treatment, however, has been presented where
there are fewer than three views such that there is insuffi-
cient information to upgrade structure and motion without
additional constraints (an infinite number of solutions exist
for Ω−1). In the context of human pose estimation, Tay-
lor [16] showed that knowing theratiosof lengths and man-
ually solving depth ambiguities was sufficient to recover
scene structure, up to a depth scale.

3We refer to quantities associated with a particular frame using super-
scripts within parentheses e.g.A(f).
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Figure 2:Symmetry (solid) and rigidity (dashed) constraints be-
tween a pair of reconstructions.

However, we adopt the approach of Liebowitz and Carls-
son [11] which we now review in some detail. In addition
to weaklyconstraining motion, they also impose constraints
upon known structure such as symmetry and the piecewise
rigidity of an articulated body. For a single reconstruction
the symmetry of the body provides four constraints between
the upper arms, forearms, thighs and forelegs (solid arrows
in Fig. 2). Similarly, for any pair of reconstructions the
rigidity of the limbs impose nine constraints on each upper
arm, forearm, thigh and foreleg, and hips (dashed arrows in
Fig. 2).

More formally, the vectorsXA andXB representingdif-
ferentlinks of equal length in thesameaffine reconstruction
transform toUXA andUXB where the Euclidean differ-
ence in length,rsym, is given by:

rsym = XT

AUTUXA −XT

BUTUXB

= (XT

A −XT

B)Ω(XA −XB)
(5)

Likewise,X(i)
A andX(j)

A representing thesamerigid link
in different affine reconstructions,i and j, constrain both
Ω(i) and Ω(j) and the residual error between reconstruc-
tions,rrig, is given by:

rrig = (X(i)
A )TΩ(i)(X(i)

A )− (X(j)
A )TΩ(j)(X(j)

A ). (6)

Since rigidity constraints are not independent, Liebowitz
and Carlsson apply them between consecutive pairs of re-
constructions4. Furthermore, since structure and motion
constrainΩ andΩ−1, respectively, all residuals cannot be
minimized within a linear least squares framework.

Liebowitz and Carlsson [11] address this by optimizing
a cost function directly over the6F − 1 elements of allU,
up to a global scale, to recoverlocal structure and motion
(since rotation and translation between reconstructions is
not recovered). This cost function is the sum of squared

4Experiments suggest they should be applied with respect to thesame
reconstruction to avoid drift in the scale of the reconstructions.

residuals for both motion and structure. However, these
can be weighted arbitrarily to reflect confidence in the con-
straints.

Since the scale of the structure is fixed by rigidity con-
straints, the scale of each image is recovered from the
computed ‘Euclidean’ motion. Under the assumption of
static cameras, the image measurements of the dynamic
scene are then scaled accordingly and treated as anortho-
graphicprojection ofFN features in astaticscene. A sin-
gle factorization-rectification operation then recovers a sin-
gle P for the entire sequence andglobal structure where
rotation and relative translation between frames is recov-
ered (although the coordinate frame remains arbitrary). The
structure is then approximated by an articulated body with
the median computed segment lengths, in the estimated
pose at each frame.

Although theoretically sound, the algorithm presented
in [11] has a number of practical limitations such as ineffi-
ciency (optimization is performed over6F −1 parameters),
lack of an intuitive initialization (linear solutions forΩ are
seldom positive definite) and considerable ambiguity in im-
plementation (U can be parameterized in several different
ways, motion and structure costs must be weighted appro-
priately and several image scales may be selected from the
recovered motion).

3. Synchronization extensions
In Section 2.1, we briefly described a synchronization
method under the assumption of non-rigid motion viewed
with an affine camera. In this section, we show how a rank
constraint framework can be applied for the perspective and
planar projective (homography) camera models to compute
the cost surface,c(f, f ′). Methods for robustly recovering
α andδt from this cost surface are detailed in [18].

3.1. Perspective projection model
Caspiet alpreviously presented a feature-based method for
perspective projection [4]. However, they used a geometric
distance measure whereas we show that comparable results
can be achieved using a computationally cheapalgebraic
distance measure expressed in a rank constraint framework.

Corresponding homogeneous image features,x andx′,
are related by the perspective fundamental matrix5, F such
that xTFx′ = 0. Using the modified ‘eight-point’ algo-
rithm [8] we compose a matrix,MF , such that under noise-
less conditionsMF f = 0 wheref = (f1, ..., f9)T is the
normalized vector of non-zero elements ofF, recovered us-
ing the SVD ofMF . We define a match cost,c(f, f ′), as
the sum of squaredalgebraicdistances,dalg(·), between the
pointsxi and their epipolar lines,Fx′

i such that:

5Using the affine fundamental matrix results in the affine method de-
scribed in Section 2.1.
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c(f, f ′) =
∑

i

dalg(xi,Fx′
i)2 = ‖MF f‖2 = σ2

9 (7)

whereσi is theith singular value ofMF .
This was tested on a running sequence pair (Fig. 3), off-

set by 30 frames, where we manually labelled both points
on the body and points on the ground plane such that per-
spective effects were observable. Using the known epipo-
lar geometry of the cameras, target image features were
projected onto their corresponding epipolar lines to re-
duce tracking error. The algorithm recovered an offset of
δt = 30 (since the features were noiseless). In comparison,
the affine method [18] recovered an inaccurate estimate of
δt = 29.69 since the projection model was inappropriate
given the depth of the scene.

Figure 3: Running sequence seen from the (top) reference and
(bottom) target viewpoints.

3.2. Homography model
Synchronizing sequences related by a homography was also
studied by Caspi and Irani using optical flow [2, 3]. We
consider the case where we observe point features moving
independently in a plane.

Figure 4: Frames from the homography sequences. The feature
tracks are elliptic due to the circular motion of the points although
this does not influence the generality of the method.

Corresponding homogeneous image features,x andx′,
are related by a homography,H, such thatHx = x′ ⇒
[x′

×]Hx = [x′
×]x′ = 0 where[x′

×] represents the matrix
equivalent of the vector product. In a similar manner to per-
spective projection we define a matrix,MH , such that under
noiseless conditionsMHh = 0 whereh = (h1, ..., h9)T is
the normalized vector of elements ofH. Again, we define

c(f, f ′) as the squared algebraic distances between mea-
surementsx′

i in the second sequence and transferred fea-
tures,Hxi, from the first sequence:

c(f, f ′) =
∑

i

dalg(x′
i,Hxi)2 = ‖MHh‖2 = σ2

9 (8)

whereσi is theith singular value ofMH . Again, recovering
H from MH using the SVD is trivial.

We demonstrate this method with point features moving
independently in a plane, captured using two cameras at ap-
proximately 12.5 frames/sec and 8 frames/sec. A crude fea-
ture tracker was implemented to recover the feature tracks
(Fig. 4). Although many tracks were corrupted by noise
and tracking error, thirteen were selected and matched by
hand. The true parameter values were manually estimated
asα ≈ 0.64 andδt ≈ 16, which correspond closely to the
recovered values ofα = 0.6249 andδt = 14.04.

4. Improved self-calibration
We now describe an improved self-calibration method (Al-
gorithm 1) that exploits a minimal parameterization ofΩ
based on assumptions regarding the camera calibration.
Specifically, weassumethe cameras have zero skew and
unit aspect ratio such that we need only minimize structural
error over allΩ thatexactlysatisfy these constraints. This
is followed by a full bundle adjustment over the free param-
eters to minimize a geometric reprojection error.

I. Recover allU using a minimal parameterization ofΩ and
compute local structure and motion;

II. Normalize image feature locations and process again to com-
pute global structure and motion;

III. Perform bundle adjustment over all free parameters, mini-
mizing geometric reprojection error.

Algorithm 1: Novel approach.

4.1. Minimal parameterization
By strictly enforcing motion constraints, we eliminate four
degrees of freedom inΩ−1. Combining the four bilin-
ear motion constraints in six unknowns results in a matrix
whose nullspace is spanned by two possible values forΩ−1

(denoted byΩ−1
1 andΩ−1

2 ) any linear combination of which
satisfies all motion constraintsexactly. We therefore param-
eterize all suchΩ−1 using polar coordinates:

Ω−1(r, θ) = r(cos(θ) ·Ω−1
1 + sin(θ) ·Ω−1

2 ) (9)

although this does not forceΩ−1 to be positive definite.
From the known composition ofΩ−1, we compute the range
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(θmin, θmax) for which Ω−1 is positive definite and mini-
mize the cost over allr > 0 andθmin < θ < θmax such that
all U can be recovered by Cholesky factorization.

The cost increases to infinity atθmin and θmax and is
convex in between such that unconstrained methods can be
employed and the midpoint of this interval provides an in-
tuitive initialization for optimization. Furthermore, the total
number of parameters is reduced from6F − 1 to 2F − 1,
implementation is unambiguous and no parameters are re-
quired to be tuned empirically.

4.2. Bundle adjustment
Having recovered local (Stage I) and then global (Stage II)
structure, we recover the median body segment lengths6 and
pose. The recovered structure at each frame is then replaced
with an articulated model at the estimated pose as in [11].

We then minimize the geometric reprojection error us-
ing an affine bundle adjustment to optimize over all free
parameters: image scales,sf

i ; camera rotation,(θx, θy, θz);
camera translation,t; body segment lengths,L; and pose
parameters,φφφf . We assume the cameras have unit aspect
ratio and zero skew. Definingεεε as the vector of reprojection
errors over all measurements, we seek to minimize the sum
of squared reprojection errors,εεεTεεε, over allF frames:

εεεTεεε =
∑

i

∑
f

∑
n

‖xf

i, n − (sf

i RXn(L,φφφf) + t)‖2
F (10)

whereR is a rotation matrix computed using Euler angles
(θx, θy, θz), andXn(L,φφφ) is the position of thenth feature
given link lengths,L, and pose,φφφ. The minimization is
achieved by solving the normal equationsJTJ∆ = JTεεε for
∆ whereJ is the Jacobian of all measurements with respect
to the parameters. Since pose and scale are frame depen-
dent,J is sparse permitting efficient minimization. The re-
sult is an articulated model fitted to the subject (up to scale),
capturing the pose at every frame. For comparison, we also
implement a perspective bundle adjustment, initialized us-
ing conventional calibration techniques7.

4.3. Results
Two 30 frame image sequences of a running motion were
synthesized using motion capture data from a commercial
system. An articulated model of known segment lengths
was imaged under perspective projection and the projected
image features used to recover affine structure by factoriza-
tion. Euclidean structure and motion was then recovered us-
ing four methods: (i) Liebowitz and Carlsson (L&C) recti-
fication; minimal parameter rectification with (ii) no bundle

6We no longer enforce symmetry at this stage since this is considered
to be the most uncertain of our assumptions.

7Due to instability, we use a stratified bundle adjustment. See [18] for
details.

adjustment; (iii) affine bundle adjustment; (iv) perspective
bundle adjustment.

Table 1 shows a comparison of the methods for noiseless
data based upon (i) number of iterations required for con-
vergence of minimization routines, (ii) time taken for con-
vergence8, (iii) total time taken (including fixed overhead
costs) and (iv) final RMS reprojection error,ERMS (pixels).

L&C Minimal A.B.A P.B.A

I
# iter. 16 10 10 10
Time (s) 2.08 0.68 0.62 0.62

II
# iter. 382 6 6 6
Time (s) 2.84 0.058 0.058 0.058

III
# iter. - - 12 85
Time (s) - - 16.25 160.81

Total time (s) 6.96 2.81 23.00 233.4
ERMS 1.41 1.44 0.785 2.9×10−4

Table 1:Performance comparison of four methods.

Table 2 shows how performance degrades with added
isotropic, zero-mean Gaussian noise of increasing standard
deviation,σ. Comparisons are based upon the mean per-
centage error in recovered segment length,EL, mean RMS
error in joint angle,EJ , over the knee and elbow joints and
camera rotation error.

σ L&C Minimal A.B.A P.B.A

EL

0 0.871 0.905 0.724 0.001
2 7.830 6.195 2.561 2.415
4 10.10 10.60 8.666 8.256

EJ

0 0.0521 0.0511 0.0328 3.8×10−5

2 0.2851 0.2776 0.1712 0.1644
4 0.3390 0.3435 0.3255 0.3220

Eω

0 0.087 0.086 0.048 3.3×10−5

2 0.317 0.285 0.038 0.006
4 0.394 0.470 1.8×10−4 0.045

Ea

0 0.101 0.102 0.076 1.79×10−5

2 0.071 0.076 0.076 0.004
4 0.055 0.045 0.071 0.010

Table 2: Recovered percentage error in segment lengths,EJ ,
RMS error in joint angles,EJ (rad), and error in camera rotations,
Eω (rad) andEa (rad), with increasing image noise,σ (pixels).

To compare camera rotations we adopt the angle-axis no-
tation. A rotation is represented by a twist angle,ω, about
an axis parallel to the unit vector,a. We denote ground truth
values byωgt andagt, quantifying error using the difference
in twist angle,Eω = |ωgt − ω| and the angle between the
axes,Ea = cos−1(aT

gta).
Our results demonstrate that the accuracy of the minimal

parameterization is comparable to that of [11] whilst reduc-

8Based on a 2.4GHz Pentium 4 desktop computer
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ing computational complexity and eliminating implemen-
tation ambiguity. Furthermore, affine bundle adjustment
generally provides a noticeable improvement in accuracy -
often comparable to that of perspective bundle adjustment
(theoretically the best we can hope to achieve in a Maxi-
mum Likelihood framework).

However, we observe a sharp increase inEL with image
noise, even for perspective bundle adjustment since this er-
ror is dependent on the imaged size of the subject and even
small amounts of noise may incur a large percentage error
in projected length. This is exacerbated further with out-of-
plane rotation due to foreshortening effects.

5. Motion capture of a novel sequence
Finally, we demonstrate the complete system combining the
synchronization and self-calibration methods described in
this paper. A juggling sequence was captured from two dif-
ferent viewpoints (Fig. 5) using uncalibrated and unsyn-
chronized cameras of different frame rates.

Figure 5:Corresponding frames from the juggling sequence

Specifically, the reference sequence was captured using
an NTSC digital camera and consisted of 150 colour frames
at 30Hz with a resolution of 320×240 pixels whilst the tar-
get sequence, captured with a PAL analogue camera, con-
tained 250 greyscale frames at 25Hz with a resolution of
720×576 pixels. Corresponding feature locations on the
upper body, head and juggling balls were marked manually
but were not corrected since the epipolar geometry of the
cameras was unknown.

From the known frame rates, we computedα =
25/30 ≈ 0.833 and estimated thatδt ≈ 115 by inspection.
These estimates were in close agreement with the recovered
values ofα = 0.8371 andδt = 113.60. New target fea-
ture locations corresponding to the reference locations were
synthesized using linear interpolation of the locations in the
original target sequence. Affine structure and motion was
then computed by factorization and upgraded to a Euclidean
coordinate frame (Fig. 6) using the self-calibration method
described in Section 4 with affine bundle adjustment.

Table 3 shows the recovered body segment lengths where
we see that the symmetry has been recovered and the seg-
ments are in proportion, despite the reduced number of
structural constraints (the lengths are normalized with re-
spect to the upper left arm). Finally, Fig. 7 shows the joint

Figure 6: (top left) Frame 75 (top centre) reconstruction from
camera 1 (top right) reconstruction from novel view (bottom) Se-
quence of reconstructions from novel view.

Limb Left Right
Upper arm 1.000 1.032
Lower arm 0.984 0.982

Table 3: Recovered limb lengths (relative to the left upper arm)
for the juggling sequence

trajectories of the elbows during the motion where the pe-
riodic motion is apparent in addition to the expected phase
difference.

6. Conclusion

We have presented a method of recovering non-rigid met-
ric structure and motion from two unsynchronized and un-
calibrated cameras by combining synchronization and self-
calibration techniques, demonstrated for the application of
human motion capture.

We extend current methods by applying rank constraint
based synchronization algorithms for perspective projection
and homography models whilst exploiting a minimal pa-
rameterization of the rectifying affine transformation to up-
grade affine structure to a Euclidean coordinate frame. This
parameterization provides an unambiguous implementation
(requiring no parameters to be tuned empirically), reduces
computational complexity and provides an intuitive initial-
ization for optimization. Pose recovery is then completed
using a full bundle adjustment over the free parameters.

Among areas requiring further development, rectifica-
tion is strictly a batch process so an obvious extension
would be to develop a recursive method. However, the key
requirement of the system is that of spatial feature corre-
spondence, solved by manual labelling (or markers). As a
result, the principal direction of future development will be
in the recovery of joint locations using image data only.

6



20 40 60 80 100 120 140
40

60

80

100

120

140

160

f

θ 
(d

eg
re

es
)

Left
Right

Figure 7:Recovered trajectories of the elbows during juggling
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